
Package: stressor (via r-universe)
August 27, 2024

Type Package

Title Algorithms for Testing Models under Stress

Version 0.2.0

Description Traditional model evaluation metrics fail to capture model
performance under less than ideal conditions. This package
employs techniques to evaluate models ``under-stress''. This
includes testing models' extrapolation ability, or testing
accuracy on specific sub-samples of the overall model space.
Details describing stress-testing methods in this package are
provided in Haycock (2023) <doi:10.26076/2am5-9f67>. The other
primary contribution of this package is provided to R users
access to the 'Python' library 'PyCaret' <https://pycaret.org/>
for quick and easy access to auto-tuned machine learning
models.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

SystemRequirements python(>=3.8.10)

Suggests knitr, rmarkdown, ggplot2, mlbench, testthat (>= 3.0.0)

Config/testthat/edition 3

Imports reticulate, stats, dplyr

VignetteBuilder knitr

Depends R (>= 3.5)

NeedsCompilation no

Author Sam Haycock [aut, cre], Brennan Bean [aut], Utah State
University [cph, fnd], Thermo Fisher Scientific Inc. [fnd]

Maintainer Sam Haycock <haycock.sam@outlook.com>

Date/Publication 2024-05-01 04:00:03 UTC

Repository https://samhaycock.r-universe.dev

1

https://doi.org/10.26076/2am5-9f67
https://pycaret.org/

2 boston

RemoteUrl https://github.com/cran/stressor

RemoteRef HEAD

RemoteSha d00feeb9b6002ca51363653f352c44841db5096c

Contents
boston . 2
create_groups . 3
create_virtualenv . 4
cv . 5
cv_cluster . 8
cv_core . 9
data_gen_asym . 10
data_gen_lm . 11
data_gen_sine . 12
dist_cent . 13
kappa_class . 14
mlm_classification . 14
mlm_init . 16
mlm_refit . 18
mlm_regressor . 19
predict . 20
python_avail . 21
reg_asym . 22
reg_sine . 23
rmse . 24
score . 24
score_classification . 25
score_regression . 26
split_data_prob . 26
thinning . 27

Index 28

boston Boston Housing Data

Description

A subset of data from the Housing data for 506 census tracts of Boston from the 1970 Census.
Original data set can be found in the mlbench package.

Usage

data(boston)

create_groups 3

Format

A data.frame with 506 rows and 13 columns:

cmedv corrected median value of owner-occupied homes in USD 1000’s

crim per capita crime rate by town

zn proportion of residential land zoned for lots over 25,000 sq.ft

indus proportion of non-retail business acres per town

nox nitric oxides concentration (parts per 10 million)

rm average number of rooms per dwelling

age proportion of owner-occupied units built prior to 1940

dis weighted distances to five Boston employment centres

rad index of accessibility to radial highways

tax full-value property-tax rate per USD 10,000

ptratio pupil-teacher ratio by town

chas Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)

lstat percentage of lower status of the population

Source

mlbench package

create_groups Create Groups for CV

Description

Create groups for the data by separating them either into 10 fold cross-validation, LOO cross-
validation, or k-means grouping.

Usage

create_groups(
formula,
data,
n_folds = 10,
k_mult = NULL,
repl = FALSE,
grouping_formula = NULL

)

4 create_virtualenv

Arguments

formula A formula object that specifies the model to be fit.

data The data that will be separated into each group.

n_folds An integer value defaulted to 10 fold cross-validation. If NULL uses Leave One
Out(LOO) instead.

k_mult When specified, this is passed onto the cv_cluster to fit the data into k_groups.

repl A Boolean value defaulted to ‘FALSE‘, change to ‘TRUE‘ when replicates need
to be included in the same group.

grouping_formula

A formula object that specifies how the groups will be gathered.

Details

If ‘k_mult‘ is specified as an integer, the formula object will be used to help determine the features
specified by the user. This will be passed to the cv_cluster function, which takes a scaled matrix of
features.

This function is called by the cv methods as it forms the groups necessary to perform the cross-
validation. If you want to use this, it is a nice function that separates the ‘data‘ into groups for
training and testing.

Value

A vector of the length equal to number of rows of data.frame from the data argument.

Examples

data generation
lm_data <- data_gen_lm(1000)

10 Fold CV group
create_groups(Y ~ ., lm_data)

Spatial CV
create_groups(Y ~ ., lm_data, n_folds = 10, k_mult = 5)

LOO CV group
create_groups(Y ~ ., lm_data, n_folds = NULL)

create_virtualenv Create ‘Python‘ Virtual Environment

Description

Allows the user to create a stressor ‘python‘ environment with ‘PyCaret‘ installed in the environ-
ment. This function assumes that you have properly installed ‘python‘. We recommend version
3.8.10. It uses existing stressor environments.

cv 5

Usage

create_virtualenv(python = Sys.which("python"), delete_env = FALSE)

Arguments

python Defaults to your install of ‘python‘. We prefer version 3.8.10. This is assuming
that you installed python from python.org. Currently ‘Anaconda‘ installations
of python are not implemented.

delete_env Boolean value to indicate if the environments need to be deleted.

Details

To install ‘python‘, it is recommended using ‘python‘ version 3.8.10 from python.org. This is the
same version recommended by ‘PyCaret‘, as it is the most stable. Users have reported troubles
using the ‘Anaconda‘ distribution of ‘python‘.

For MacOS and Linux Users note that in order to run this package, ‘LightGBM‘ package on python
requires the install of an additional compiler ‘cmake‘ and the ‘libomp‘ (Open Multi-Processing
interface). Troubleshoot link from the ‘LightGBM‘documentation here.

Value

A message indicating which environment is being used.

Troubleshoot

If ‘python‘ is not being found properly, trying setting the ‘RETICULATE_PYTHON‘ to blank
string. Also ensure that you do not have other ‘python‘ objects in your environment.

Also note that on some instances that a warning message may be displayed as to which version of
‘python‘ is being used.

Examples

create_virtualenv()

cv Cross Validation

Description

This is the core of cross-validation- both standard and using k-mean groups. This method is called
by other cv methods of classes.

https://www.python.org/downloads/release/python-3810/
https://lightgbm.readthedocs.io/en/latest/Installation-Guide.html

6 cv

Usage

cv(
object,
data,
n_folds = 10,
k_mult = NULL,
repl = FALSE,
grouping_formula = NULL

)

S3 method for class 'lm'
cv(
object,
data,
n_folds = 10,
k_mult = NULL,
repl = FALSE,
grouping_formula = NULL

)

S3 method for class 'mlm_stressor'
cv(
object,
data,
n_folds = 10,
k_mult = NULL,
repl = FALSE,
grouping_formula = NULL

)

S3 method for class 'reg_asym'
cv(
object,
data,
n_folds = 10,
k_mult = NULL,
repl = FALSE,
grouping_formula = NULL

)

S3 method for class 'reg_sine'
cv(
object,
data,
n_folds = 10,
k_mult = NULL,
repl = FALSE,
grouping_formula = NULL

cv 7

)

Arguments

object One of the four objects that is accepted: mlm_stressor, reg_sine, reg_asym, or
lm.

data A data.frame object that contains all the entries to be cross-validated on.
n_folds An integer value for the number of folds defaulted to 10. If NULL, it will run

LOO cross-validation.
k_mult Used to specify if k-means clustering is to be used, defaulted to NULL.
repl A Boolean value defaulted to ‘FALSE‘, change to ‘TRUE‘ when replicates need

to be included in the same group.
grouping_formula

A formula object that specifies how the groups will be gathered.

Value

If the object is of class mlm_stressor, then a data.frame will be returned. Otherwise, a vector of the
predictions will be returned.

Methods (by class)

• cv(lm): Cross-Validation for lm
• cv(mlm_stressor): Cross-Validation for mlm_stressor
• cv(reg_asym): Cross-Validation for reg_asym
• cv(reg_sine): Cross-Validation for reg_sine

Examples

lm example
lm_test <- data_gen_lm(20)
lm <- lm(Y ~ ., lm_test)
cv(lm, lm_test, n_folds = 2)

lm_test <- data_gen_lm(20)
create_virtualenv()
mlm_lm <- mlm_regressor(Y ~ ., lm_test)
cv(mlm_lm, lm_test, n_folds = 2)

Asymptotic example
asym_data <- data_gen_asym(10)
asym_fit <- reg_asym(Y ~ ., asym_data)
cv(asym_fit, asym_data, n_folds = 2)

Sine example
sine_data <- data_gen_sine(10)
sine_fit <- reg_sine(Y ~ ., sine_data)
cv(sine_fit, sine_data, n_folds = 2)

8 cv_cluster

cv_cluster Spatial Cluster-Based Partitions for Cross-Validation

Description

This function creates cluster-based partitions of a sample space based on k-means clustering. In-
cluded in the function are algorithms that attempt to produce clusters of roughly equal size.

Usage

cv_cluster(features, k, k_mult = 5, ...)

Arguments

features A scaled matrix of features to be used in the clustering. Scaling usually done
with scale and should not include the predictor variable.

k The number of partitions for k-fold cross-validation.

k_mult k*k_mult determines the number of subgroups that will be created as part of the
balancing algorithm.

... Additional arguments passed to kmeans as needed.

Details

More information regarding spatial cross-validation can be found in Robin Lovelace’s explanation
of spatial cross-validation in his textbook.

Value

An integer vector that is number of rows of features with indices of each group.

Examples

Creating a matrix of predictor variables
x_data <- base::scale(data_gen_lm(30)[, -1])
groups <- cv_cluster(x_data, 5, k_mult = 5)
groups

https://r.geocompx.org/spatial-cv.html?q=cross%20validation#intro-cv

cv_core 9

cv_core Cross Validation Function

Description

This is the machinery to run cross validation. It subsets the test and train set based on the groups it
receives.

Usage

cv_core(object, data, t_groups, ...)

Arguments

object Currently ‘"reg_sine", "reg_asym", "lm", "mlm_stressor"‘ objects are accepted.

data A data.frame object that has the same formula that was fitted on the data.

t_groups The groups for cross validation: standard cross validation, LOO cross_validation,
or spatial cross validation.

... Additional arguments that are passed to the predict function.

Value

Either a vector of predictions for ‘"reg_sine", "reg_asym", "lm"‘ and a data frame for ‘"mlm_stressor"‘.

Examples

lm example
lm_test <- data_gen_lm(20)
lm <- lm(Y ~ ., lm_test)
cv(lm, lm_test, n_folds = 2)

lm_test <- data_gen_lm(20)
create_virtualenv()
mlm_lm <- mlm_regressor(Y ~ ., lm_test)
cv(mlm_lm, lm_test, n_folds = 2)

Asymptotic example
asym_data <- data_gen_asym(10)
asym_fit <- reg_asym(Y ~ ., asym_data)
cv(asym_fit, asym_data, n_folds = 2)

Sine example
sine_data <- data_gen_sine(10)
sine_fit <- reg_sine(Y ~ ., sine_data)
cv(sine_fit, sine_data, n_folds = 2)

10 data_gen_asym

data_gen_asym Data Generation Asymptotic

Description

Creates a synthetic data set for an additive asymptotic model. See the details section for clarification.

Usage

data_gen_asym(
n,
weight_mat = matrix(rlnorm(10), nrow = 2, ncol = 5),
y_int = 0,
resp_sd = 1,
window = 1e-05,
...

)

Arguments

n The number of observations for each parameter.

weight_mat The parameter coefficients, where each column represents the coefficients and
is two rows as each additive equation contains two parameters. Defaulted to be
10 random numbers from the log-normal distribution. The second row of the
matrix needs to be positive.

y_int The y-intercept term of the additive model.

resp_sd The standard deviation of the epsilon term to be added for noise.

window Used to determine for any given X variable to get you within distance to capture
the asymptotic behavior.

... Additional arguments that are not currently implemented.

Details

Observations are generated from the following model:

y =

n∑
i=1

−αie
−βi·xi + yint

Where ‘n‘ is the number of parameters to be used, αi’s are the scaling parameter and the βi’s are
the weights associated with each xi. With the yint being where it crosses the y-axis.

Value

A data.frame object with the n rows and the response variable with the number of parameters being
equal to the number of columns from the weight matrix.

data_gen_lm 11

Examples

Generates 10 observations
asym_data <- data_gen_asym(10)
asym_data

data_gen_lm Data Generation for Linear Regression

Description

Creates a synthetic data set for an additive linear model. See details for clarification.

Usage

data_gen_lm(n, weight_vec = rep(1, 5), y_int = 0, resp_sd = 1, ...)

Arguments

n The number of observations for each parameter.

weight_vec The parameter coefficients where each entry represents the coefficients for the
additive linear model.

y_int The y-intercept term of the additive model.

resp_sd The standard deviation of the epsilon term to be added for noise.

... Additional arguments that are not currently implemented.

Details

Observations are generated from the following model:

y =

n∑
i=1

αi · xi + yint

Where ‘n‘ is the number of parameters to be used and the αi’s are the weights associated with each
xi. With the yint being where it crosses the y-axis.

Value

A data.frame object with the n rows and the response variable with the number of parameters being
equal to the number of columns from the weight matrix.

Examples

Generates 10 observations
lm_data <- data_gen_lm(10)
lm_data

12 data_gen_sine

data_gen_sine Data Generation for Sinusoidal Regression

Description

Creates a synthetic data set for an additive sinusoidal regression model. See the details section for
clarification.

Usage

data_gen_sine(
n,
weight_mat = matrix(rnorm(15), nrow = 3, ncol = 5),
y_int = 0,
resp_sd = 1,
...

)

Arguments

n The number of observations for each parameter.

weight_mat The parameter coefficients, where each column represents the coefficients and
is three rows as each additive equation contains three parameters. Defaulted to
be 15 random numbers from the normal distribution.

y_int The y-intercept term of the additive model.

resp_sd The standard deviation of the epsilon term to be added for noise.

... Additional arguments that are not currently implemented.

Details

Observations are generated from the following model:

y =

n∑
i=1

αi sin (βi(xi − γi))) + yint

Where ‘n‘ is the number of parameters to be used, αi’s are the amplitude of each sine wave, βi’s
are the periods for each sine wave and indirectly the weight on each xi, and the γi’s are the phase
shift associated with each sine wave. With the yint being where it crosses the y-axis.

Value

A data.frame object with the n rows and the response variable with the number of parameters being
equal to the number of columns from the weight matrix.

dist_cent 13

Examples

Generates 10 observations
sine_data <- data_gen_sine(10)
sine_data

dist_cent Distance to Center

Description

Calculates the distance from center of the matrix of predictor variables using a euclidean distance,
or the average of all x-dimensions.

Usage

dist_cent(formula, data)

Arguments

formula A formula object.

data A data.frame object.

Details

Formula used to calculate the center point:

x̄ =
1

N

N∑
j=1

xij

Where x̄ is a vector of the center of the x-dimensions, N is the number of rows in the matrix, and
xij is the i, jth entry in the matrix.

Value

A vector of distances from the center.

Examples

data <- data_gen_lm(10)
dist <- dist_cent(Y ~ ., data)
dist

14 mlm_classification

kappa_class Kappa function

Description

A function to calculate the Kappa of binary classification.

Usage

kappa_class(confusion_matrix)

Arguments

confusion_matrix

A matrix or table that is the confusion matrix.

Value

A numeric value representing the kappa value.

mlm_classification Fit Machine Learning Classification Models

Description

Through the PyCaret module from ‘python‘, this function fits many machine learning models si-
multaneously without requiring any ‘python‘ programming on the part of the user. This function is
specifically designed for the classification models fitted by ‘PyCaret‘.

Usage

mlm_classification(
formula,
train_data,
fit_models = c("ada", "et", "lightgbm", "dummy", "lr", "rf", "ridge", "knn", "dt",

"gbc", "svm", "lda", "nb", "qda"),
sort_v = c("Accuracy", "AUC", "Recall", "Precision", "F1", "Kappa", "MCC"),
n_models = 9999,
seed = NULL,
...

)

https://pycaret.gitbook.io/docs/get-started/quickstart#classification

mlm_classification 15

Arguments

formula The classification formula, as a formula object.
train_data A data.frame object that includes data to be trained on.
fit_models A character vector with all the possible Machine Learning classifiers that are

currently being fit, the user may specify a subset of them using a character vec-
tor.

ada AdaBoost Classifier
dt Decision Tree Classifier

dummy Dummy Classifier
et Extra Trees Classifier

gbc Gradient Boosting Classifier
knn K Neighbors Classifier
lda Linear Discriminant Analysis

lightgbm Light Gradient Boosting Machine
lr Logistic Regression

nb Naive Bayes
qda Quadratic Discriminant Analysis

rf Random Forest Classifier
ridge Ridge Classifier
svm SVM - Linear Kernel

sort_v A character vector indicating what to sort the tuned models on.
n_models An integer value defaulted to a large integer value to return all possible models.
seed An integer value to set the seed of the ‘python‘ environment. Default value is

set to ‘NULL‘.
... Additional arguments passed onto mlm_init.

Details

‘PyCaret‘ is a ‘python‘ module where machine learning models can be fitted with little coding by
the user. The pipeline that ‘PyCaret‘ uses is a setup function to parameterize the data that is easy
for all the models to fit on. Then the compare models function is executed, which fits all the models
that are currently available. This process takes less than five minutes for data.frame objects that are
less than 10,000 rows.

Value

A list object where the first entry is the models fitted and the second is the initial predictive accuracy
on the random test data. Returns as two classes ‘"mlm_stressor"‘ and ‘"classifier"‘.

Examples

lm_test <- data_gen_lm(20)
binary_response <- sample(c(0, 1), 20, replace = TRUE)
lm_test$Y <- binary_response
mlm_class <- mlm_classification(Y ~ ., lm_test)

16 mlm_init

mlm_init Compare Machine Learning Models

Description

Through the PyCaret module from ‘python‘, this function fits many machine learning models si-
multaneously without requiring any ‘python‘ programming on the part of the user. This is the core
function to fitting the initial models. This function is the backbone to fitting all the models.

Usage

mlm_init(
formula,
train_data,
fit_models,
sort_v = NULL,
n_models = 9999,
classification = FALSE,
seed = NULL,
...

)

Arguments

formula The regression formula or classification formula. This formula should be linear.

train_data A data.frame object that includes data to be trained on.

fit_models A character vector with all the possible Machine Learning regressors that are
currently being fit. The user may specify a subset of them using a character
vector.

ada AdaBoost Regressor
br Bayesian Ridge
dt Decision Tree Regressor

dummy Dummy Regressor
en Elastic Net
et Extra Trees Regressor

gbr Gradient Boosting Regressor
huber Huber Regressor

knn K Neighbors Regressor
lar Least Angle Regression

lasso Lasso Regression
lightgbm Light Gradient Boosting Machine

llar Lasso Least Angle Regression
lr Linear Regression

omp Orthogonal Matching Pursuit
par Passive Aggressive Regressor

https://pycaret.gitbook.io/docs/get-started/quickstart

mlm_init 17

rf Random Forest Regressor
ridge Ridge Regression

If classification is set to ‘TRUE‘, these models can be used depending on user.
These are the default values for classification:

ada AdaBoost Classifier
dt Decision Tree Classifier

dummy Dummy Classifier
et Extra Trees Classifier

gbc Gradient Boosting Classifier
knn K Neighbors Classifier
lda Linear Discriminant Analysis

lightgbm Light Gradient Boosting Machine
lr Logistic Regression

nb Naive Bayes
qda Quadratic Discriminant Analysis

rf Random Forest Classifier
ridge Ridge Classifier
svm SVM - Linear Kernel

sort_v A character vector indicating what to sort the tuned models on. Default value is
‘NULL‘.

n_models A defaulted integer to return the maximum number of models.

classification A Boolean value tag to indicate if classification methods should be used.

seed An integer value to set the seed of the python environment. Default value is set
to ‘NULL‘.

... Additional arguments passed to the setup function in ‘PyCaret‘.

Details

The formula should be linear. However, that does not imply a linear fit. The formula is a convenient
way to separate predictor variables from explanatory variables.

‘PyCaret‘ is a ‘python‘ module where machine learning models can be fitted with little coding by
the user. The pipeline that ‘PyCaret‘ uses has a setup function to parameterize the data that is easy
for all the models to fit on. Then compare models function is executed which fits all the models that
are currently available. This process takes less than five minutes for data.frame objects that are less
than 10,000 rows.

Value

A list object that contains all the fitted models and the CV predictive accuracy. With a class attribute
of ‘"mlm_stressor"‘.

18 mlm_refit

Examples

lm_test <- data_gen_lm(20)
create_virtualenv()
mlm_lm <- mlm_regressor(Y ~ ., lm_test)

mlm_refit Refit Machine Learning Models

Description

Refits models fitted in the mlm_init, and returns the predictions.

Usage

mlm_refit(mlm_object, train_data, test_data, classification = FALSE)

Arguments

mlm_object A ‘"mlm_stressor"‘ object.

train_data A data.frame object used for refitting excludes the test data. Can be ‘NULL‘ to
allow for predictions to be used on the current model.

test_data A data.frame object used for predictions.

classification A Boolean value used to represent if classification methods need to be used to
refit the data.

Value

A matrix with the predictions of the various machine learning methods.

Examples

lm_train <- data_gen_lm(20)
train_idx <- sample.int(20, 5)
train <- lm_train[train_idx,]
test <- lm_train[-train_idx,]
create_virtualenv()
mlm_lm <- mlm_regressor(Y ~ ., lm_train)
mlm_refit(mlm_lm, train, test, classification = FALSE)

mlm_regressor 19

mlm_regressor Fit Machine Learning Regressor Models

Description

Through the PyCaret module from ‘python‘, this function fits many machine learning models simul-
taneously with without requiring any ‘python‘ programming on the part of the user. This function
is specifically designed for the regression models.

Usage

mlm_regressor(
formula,
train_data,
fit_models = c("ada", "et", "lightgbm", "gbr", "lr", "rf", "ridge", "knn", "dt",

"dummy", "lar", "br", "huber", "omp", "lasso", "en", "llar", "par"),
sort_v = c("MAE", "MSE", "RMSE", "R2", "RMSLE", "MAPE"),
n_models = 9999,
seed = NULL,
...

)

Arguments

formula A linear formula object.

train_data A data.frame object that includes data to be trained on.

fit_models A character vector with all the possible Machine Learning regressors that are
currently being fit. The user may specify a subset of them using a character
vector.

ada AdaBoost Regressor
br Bayesian Ridge
dt Decision Tree Regressor

dummy Dummy Regressor
en Elastic Net
et Extra Trees Regressor

gbr Gradient Boosting Regressor
huber Huber Regressor

knn K Neighbors Regressor
lar Least Angle Regression

lasso Lasso Regression
lightgbm Light Gradient Boosting Machine

llar Lasso Least Angle Regression
lr Linear Regression

omp Orthogonal Matching Pursuit
par Passive Aggressive Regressor

https://pycaret.gitbook.io/docs/get-started/quickstart#regression

20 predict

rf Random Forest Regressor
ridge Ridge Regression

sort_v A character vector indicating what to sort the tuned models on.

n_models An integer value defaulted to a large integer value to return all possible models.

seed An integer value to set the seed of the ‘python‘ environment. Default value is
set to ‘NULL‘.

... Additional arguments passed onto mlm_init.

Details

‘PyCaret‘ is a ‘python‘ module where machine learning models can be fitted with little coding by
the user. The pipeline that ‘PyCaret‘ uses is a setup function to parameterize the data that is easy
for all the models to fit on. Then the compare models function is executed, which fits all the models
that are currently available. This process takes less than five minutes for data.frame objects that are
less than 10,000 rows.

Value

A list object where the first entry is the models fitted and the second is the initial predictive accuracy
on the random test data. Returns as two classes ‘"mlm_stressor"‘ and ‘"regressor"‘.

Examples

lm_test <- data_gen_lm(20)
create_virtualenv()
mlm_lm <- mlm_regressor(Y ~ ., lm_test)

predict Prediction Methods for Various Models

Description

Predict values on ‘mlm_stressor‘, ‘reg_asym‘, or ‘reg_sine‘ objects. This expands the predict func-
tion.

Usage

S3 method for class 'mlm_stressor'
predict(object, newdata, train_data = NULL, ...)

S3 method for class 'reg_asym'
predict(object, newdata, ...)

S3 method for class 'reg_sine'
predict(object, newdata, ...)

python_avail 21

Arguments

object A ‘mlm_stressor‘, ‘reg_asym‘, or ‘reg_sine‘ object.

newdata A data.frame object that is the data to be predicted on.

train_data A data.frame object defaulted to ‘NULL‘. This is only used when an ‘mlm_stressor‘
object needs to be refitted.

... Extending the predict function default. In this case, it is ignored.

Value

A data.frame of predictions if ‘mlm_stressor‘ object or vector of predicted values.

Examples

mlm_stressor example
lm_test <- data_gen_lm(20)
create_virtualenv()
mlm_lm <- mlm_regressor(Y ~ ., lm_test)
predict(mlm_lm, lm_test)

Asymptotic Examples
asym_data <- data_gen_asym(10)
asym_fit <- reg_asym(Y ~ ., asym_data)
predict(asym_fit, asym_data)
Sinusoidal Examples
sine_data <- data_gen_sine(10)
sine_fit <- reg_sine(Y ~ ., sine_data)
predict(sine_fit, sine_data)

python_avail Check if ‘Python‘ is Available

Description

A function that allows examples to run when appropriate.

Usage

python_avail()

Value

A Boolean value is returned.

Examples

python_avail()

22 reg_asym

reg_asym Asymptotic Regression

Description

A simple example of asymptotic regression that is in the form of y = −e−x and is the sum of
multiple of these exponential functions with a common intercept term.

Usage

reg_asym(
formula,
data,
method = "BFGS",
init_guess = rep(1, ncol(data) * 2 - 1),
...

)

Arguments

formula A formula object to describe the relationship.

data The response and predictor variables.

method The method that is passed to the optim function. By default, it is the BFGS
method which uses a gradient.

init_guess The initial parameter guesses for the optim function. By default, it is all ones.

... Additional arguments passed to the optim function.

Value

A "reg_asym" object is returned which contains the results from the optim function that was re-
turned.

Examples

asym_data <- data_gen_asym(10)
reg_asym(Y ~ ., asym_data)

reg_sine 23

reg_sine Sinusoidal Regression

Description

A simple example of sinusoidal regression that is in the form of y = asin(b(x− c)) and is the sum
of of multiple of these sine functions with a common intercept term.

Usage

reg_sine(
formula,
data,
method = "BFGS",
init_guess = rep(1, ncol(data) * 3 - 2),
...

)

Arguments

formula A formula object to describe the relationship.

data The response and predictor variables.

method The method that is passed to the optim function. By default, it is the BFGS
method which uses a gradient.

init_guess The initial parameter guesses for the optim function. By default, it is all ones.

... Additional arguments passed to the optim function.

Value

A "reg_sine" object is returned which contains the results from the optim function that was returned.

Examples

sine_data <- data_gen_sine(10)
reg_sine(Y ~ ., sine_data)

24 score

rmse Root Mean Squarred Error (RMSE)

Description

A function to calculate the RMSE.

Usage

rmse(predicted, observed)

Arguments

predicted A data.frame or vector object that is the same number of rows or length as the
length of observed values.

observed A vector of the observed results.

score Score Function for Metrics

Description

A score function takes the observed and predicted values and returns a vector or data.frame of the
various metrics that are reported from ‘PyCaret‘. For regression, the following metrics are available:
‘RMSE‘, ‘MAE‘, ‘MSE‘, ‘R2‘, ‘RMSLE‘, and ‘MAPE‘. For classification, the following metrics
are available:‘Accuracy‘, ‘AUC‘, ‘Recall‘, ‘Prec.‘, ‘F1‘, ‘MCC‘, and ‘Kappa‘.

Usage

score(observed, predicted, ...)

Arguments

observed A vector of the observed results.

predicted A data.frame or vector object that is the same number of rows or length as the
length of observed values.

... Arguments passed on to score_classification, score_regression

metrics A character vector of the metrics to be fitted. This is defaulted to be
the metrics from ‘PyCaret‘.

Value

A matrix with the various metrics reported.

score_classification 25

Examples

lm_data <- data_gen_lm(100)
indices <- split_data_prob(lm_data, .2)
train <- lm_data[!indices,]
test <- lm_data[indices,]
model <- lm(Y ~ ., train)
pred_lm <- predict(model, test)
score(test$Y, pred_lm)

score_classification Score Function for Binary Classification

Description

This function takes the observed and predicted values and computes metrics that are found in ‘Py-
Caret‘ such as: ‘Accuracy‘, ‘AUC‘, ‘Recall‘, ‘Prec.‘, ‘F1‘, ‘MCC‘, and ‘Kappa‘.

Usage

score_classification(
observed,
predicted,
metrics = c("Accuracy", "AUC", "Recall", "Prec.", "F1", "MCC", "Kappa")

)

Arguments

observed A vector of the observed results.

predicted A data.frame or vector object that is the same number of rows or length as the
length of observed values.

metrics A character vector of the metrics to be fitted. This is defaulted to be the metrics
from ‘PyCaret‘.

Value

A vector or data.frame of the methods and metrics.

26 split_data_prob

score_regression Score Function for Regression

Description

This function takes the observed and predicted values and computes metrics that are found in ‘Py-
Caret‘ such as: ‘RMSE‘, ‘MAE‘, ‘MSE‘, ‘R2‘, ‘RMSLE‘, and ‘MAPE‘.

Usage

score_regression(
observed,
predicted,
metrics = c("RMSE", "MAE", "MSE", "R2", "RMSLE", "MAPE")

)

Arguments

observed A vector of the observed results.

predicted A data.frame or vector object that is the same number of rows or length as the
length of observed values.

metrics A character vector of the metrics to be fitted. This is defaulted to be the metrics
from ‘PyCaret‘.

Value

A vector or data.frame of the methods and metrics.

split_data_prob Create Train Index Set

Description

This function takes in a data.frame object and the training size and returns a logical vector indicating
which entries to include.

Usage

split_data_prob(data, test_prop)

Arguments

data A data.frame object used to determine the length of the vector.

test_prop A numeric that is between zero and one that represents the proportion of obser-
vations to be included in the test data.

thinning 27

Value

A logical vector is returned that is the same length as the number of rows of the data.

Examples

lm_data <- data_gen_lm(10)
indices <- split_data_prob(lm_data, .8)
train <- lm_data[indices,]
test <- lm_data[!indices,]

thinning Thinning Algorithm for Models with Predict Function

Description

Fits various train size and test sizes.

Usage

thinning(
model,
data,
max = 0.95,
min = 0.05,
iter = 0.05,
classification = FALSE

)

Arguments

model A model that is currently of class type "reg_sine", "reg_asym", "lm", or "mlm_stressor".
data A data frame with all the data.
max A numeric value in (0, 1] and greater than ‘min‘, defaulted to .95.
min A numeric value in (0, 1) and less than ‘max‘, defaulted to .05.
iter A numeric value to indicate the step size, defaulted to .05.
classification A Boolean value defaulted ‘FALSE‘, used for ‘mlm_classification‘.

Value

A list of objects, where the first element is the RMSE values at each iteration and the second element
is the predictions.

Examples

lm_data <- data_gen_lm(1000)
lm_model <- lm(Y ~ ., lm_data)
thin_results <- thinning(lm_model, lm_data)

Index

∗ datasets
boston, 2

boston, 2

create_groups, 3
create_virtualenv, 4
cv, 4, 5
cv_cluster, 4, 8
cv_core, 9

data_gen_asym, 10
data_gen_lm, 11
data_gen_sine, 12
dist_cent, 13

kappa_class, 14
kmeans, 8

mlbench, 2
mlm_classification, 14
mlm_init, 15, 16, 18, 20
mlm_refit, 18
mlm_regressor, 19

predict, 20, 20, 21
python_avail, 21

reg_asym, 22
reg_sine, 23
rmse, 24

scale, 8
score, 24
score_classification, 24, 25
score_regression, 24, 26
split_data_prob, 26

thinning, 27

28

	boston
	create_groups
	create_virtualenv
	cv
	cv_cluster
	cv_core
	data_gen_asym
	data_gen_lm
	data_gen_sine
	dist_cent
	kappa_class
	mlm_classification
	mlm_init
	mlm_refit
	mlm_regressor
	predict
	python_avail
	reg_asym
	reg_sine
	rmse
	score
	score_classification
	score_regression
	split_data_prob
	thinning
	Index

